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FOREWORD

This report discussec the redearch accompllished on the Higb

Altitude Clear Air Turbulence project prior to its redirection

on 15 February 1965 and was prepared by the Lockhead-California
Company, on Air I'orce Contrac’, AF 33{657)-111L43, under Task No.
146902 of Project LU69. The work was administered under the
direction of Structures Division of the Air Force Flight Dynamics
Laboratory. Mr. Neal Loving was Project Engineer for the Lsboratory.

This work was conducted from 15 April 1943 to 15 February 1965, This
manuscript was released for publication as an RTD Technical Report
19 June 19665.

Thi 8 technicel report has been reviewed nd is spproved.

e /
T e N TF e

RICHAKD F, HOENER
Acting Chief
Structures Division




—- r——— —————— T

ABSTRACT

The purnposa of thie renmart 12 435 Jsgorilo i ign altitude clear air
turbulence (HICAT) program accomplishments and results as of 15 February
1965, when the program was redirected. The program effort consista of
the messureneiit ol HICAT veloecity components at altitudes above 50,000
feet in seversl world aress. The progrom objective is the statistdical
definition of the characteristics of HICAT so as to improve structwrul
design criteria, '

- In the work accomplished thus far, an analog FM instrumentetion sysivem
utilizing a fixed vane gust probe and a 7-hour recording system was
installed aboard an Air Force U-2. HICAT searches were conducted st
Adr Force banes in California, Florlda and Puerto Rico. Over seven
hours of HICAT assoclated with et ctreams, convective pctivity due to
low level heating, snd mountaln wave activity were recorded. The latter
category provided the most severe turbulence experienced to daste, i.e., c.g.
normal scceleration lncremental peaks up to aboub + lg and HMS gust velocitles
in excess of 5 ft/sec.

Actual vertical gust velocity time histories containing gust wavelengths
from 70 to 2500 feet have been calculated from the measurements and used
to obtain gust velocity peak counts and power spectra, Derived equivalent
gust velocities, Ude’ were also calculated and found to be comparable with
simllar NAGA data.

The redirected and extended HICAT program will utilize a new digital (PCM)
instrumentation system, This system will include a stable platform which
will greatly improve the precisinn of HICAT measuremcnts and permit tur-
bulence wavelengths in excess of 12,000 feet to be measured.
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SECTION I

INTRODUCTION

BACKGROUND

A distinguishing character!stic of advanced flight wvehicles 1s the Increased
glze of their operating envelope in terms of speed and altitude. Optimum
design of such a vehicle 1s essential and requlrcs detailed knowledge of ‘the
intended operating environment.

Sometime before 1962 the Alr Force recognized the need for better definition
of the clear air turbulence environment, particularly for altitudes above
50,000 fect (Reference_1). Information available then was derived almost
entirely from NASA voul recordings acquired during 192 U-2 flights in five
world areas (Reference 2). These flights were made for purposes not directly
related to atmospheric turbulence or the penetration of turbulence. Only
about half of the data from these flights or approximately 5-1/2 hours were
for turbulence ebove 50,000 feet.

The Air Force realized the danger of relying solely on the acceleration
response of the U-2 aircraft as a measure of turbulence at high altitudes.

A supersonic or hypersonic vehicle of possibly radical shape, flying four to
ten or more times the speed of the U-2, will obviously have a somewhat differ-
ent response to turbulence than the U-2. An aircraft flying at these hlgh
speeds would be affected much more by longer turbulence wavelengths and less
by the shorter than the relatively slow flying U-2, T¥or these reasons, the
Air Force enlimted Lockheed's ald to measure high altitude clear sir turbu-
lence (HICAT) at altitudes above 50,000 feet in several world areas. The prin-
cipal objlective of the progrem vas to statigtically define the characteristics
of high altitude CAT so a8 to improve atructural design criteria. To accom-
plish this result, an Air Force U-2 was to be instrumented so that true gust
velociiy components encountered along the alrcraft flight path could bLe de=-
termined.

Lockheed was directed to install and maintain the turbulence measuring in-
strumentation in the U-2 as well as to process and anilyze ithe data. In this
Joint. effort, the Alr Force was to supply the instrumentation, maintain and
fly the HICAT aircraft, and provide overall directlon of the program. Under

a separate contract (Refer=uce 4) Lockheed was directed to utilize the data
gathered in the flight program to develop a statistical model of high altitude
CAT. The model would then provide metecrologists with a basis for the pre-
diction of atmospheric rough spots.

HICAT PROGRAM HISTORY

j Most of the aircraft instrumentation wus provided off-the-shelf from Alr Force
) inventory in order to keep within the modest HICAT budget. In rany instances

standard instruments were cupplied which were not particularly intended for
turbulence research,

: Aircraft velocity, center-of-gravity acceleration, and altitude
¢ .% 1




Inatallation of the instrumentation was begun at Edwards AFB on 18 March 1963
after inspection and preliminary calibration, Installation work wags halted
14 Tuna 1_053 when tha aiveraft wma veanired for n hicher mriarity A4v Wnvea
program, The aircraft was unavailable to the program almost continuously
until 26 December 1963. 1In this pericd, it was established that the Giaanini
type gust prove originaily supplled Lo the progiewm iws & Douglas prototype
model, and hence not repavabie by Glannini, the licensed manufacturer Thlo
probe (a low altitude device used in the B-66B program, Referenc: 3) wan 1in-
tended for interim use only until a more sensitive probe could be purchaned.
However, a new Gilanninl probe could not be bullt to meet the requirementc tor
high altitule gust measurements because appropriate 1 psi pressure trang-
ducers were unavailable.

Consequently, at the request of the Air Force, Lockheed designed and bullt a
high alt!tude gust sensor. 7The gensor design was based upon the fixed vane
principle (for deseription, see page I ) utilized successfully in a recent
investigation of tall butfeting turbulence on the TSN P3A patrol tomber.
Fortunately, it was possible to edapt the Lockheed gust acnsors to the nose
boom previously febricated for the Giannini probe.

On 27 December 1963, the Moblle Date Systems Van (a mobile ground station for
instrument waintenance and calibration and for rapidly couverting flight re-
corded magnetic tapes to analog ouclllograms; see poge 9 ) wae moved to EAFB.
The HICAT field team, consisting of an instrumentation engineer and three
technlcians, followed on 30 December und completed the van equipment checkout
on ailte 10 January 196k, :

After two more deleys, totalling approximately & month because of alrcralt

and then engine unavailability, the first HICAT checkout flight wes made on

20 Pebruary 196k and the first HICAT search om 3 April 1964. In the period
ending 15 July 1964, 18 HICAT search flights were completed, flve from EAFB,
California, four fium Patrick AFB, Florida, and nine from Ramey AFB, Puerto
Rico. Approximately six hours of high altitude CAT of predominantly light to
moderate intensity® was encountered on these flights. (Sce HICAT log, page88.)
Turbulence in the wavelengti.range from 60 to 2500 feet was located and re-
corded approximately 14 percent of the time at altitudes above 50,000 feet.

In the work accomplished thus far, the HICAT aircraft had to be shared on a
day-to~day basis with other higher priority Air Force programs. This mode of
operation caused HICAT flights to be made during daytime hours on a mure or
less scheduled basls. For this reason, the flights only occasionally coin-
clded with optimum turbulence forecasts.

On 15 February 1965, the HICAT program was redirected and extended, HICAT
searches are expected to be resumed near the end of 1965 with improved in-
strumentation capable of accurately measuring the very long turbulence waves,
i.e., those up to 12,000 feet or more in length. The new ilactrumentation
system will be & digital (FCM) type. It will have sufficient capecity to

2 Approximetely * 0.1g to * 0.7g in terms of c.g. acceleration




to record up to 12 channels of data in addition to those required for tle
HICAT measurements. Thus, measnrcments related to HICAT research such as
electric field strength, ozone concentration, particle counts and the 1i.c¢,

- - -
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SFCTION II

HTCAT INSTRUMENTATION SYSTFM

GENERAL

The HICAT ingtrumentatlon system is compnsed of three main elements. The
first, of course, 18 the mircraft end the airborne instrumentation (Figure 1).
Basically thie coneiste of sensitive vertice.l and lateral gust sensing vanes
mounted on the end of a long stiff boom on the nose of the aircraft (Figures
2 and 3). These vanes detect the fluctuating turbulence velocities by small
changes in angle-~of-attack relative to the airplane. Analog signals propor-
tional to the angle changes are generated by the gust sensors during the
fiight end recorded in frequency modulsated (FM) form on ovne inch magnetic
tape. Also recorded and nged in the must velocity equations {> correct for
the e¢ffzets of alrcraft motion are menguremente of airerwft attltude angles,
angular rates, and three axis accelerations, All the gust measuremente are
recorded using the lowest speed mode of the tape recordzr. In this way a
continuous recording of the entire flight from takeoff to landing is obtained.

The second element in the {nstrumentation schex~ 1is the Mobile Data Systems
Van which accompanies the aircraft to all bases of operation. The Van pro-
vides facilities for instrumeuntation maintenance, calibration and pre- and
post=flight checkout. Perhaps more important, the Van contains aquipment for
the rapid production of an analog oscillograph record (i.e., a time history)
from the high speed playback of the fiight recorded magnetic tape. This
record is cailud the "Quick-Look" and 1s made immediately after a HICAT
search flight. The "Quick~Look" record is examined to detecrmine the extent
and intenaity of turbulence encountered and to check the performance of the
instrumentation system.

After evaluation, the flight recorded tape and the "Quick-Look" records are
transmitted to the third element in the HICAT instrumentation scheme, the
grcund station. The ground station converts the flight recorded magnetic
date tape to a computer compatible data tape based upon editing information
derived from the "Quick-Locok"” record. Three significant functions are per-
formed iu this yrocess. The ground station electronically filters the data
to eliminate electrical noise as well as those signals at frequencies above
those of interest, i.e,, greater than 10 cps. At the same time, the ground
station reads the selected portions of the analog recorded aignals and con-
verts them into calibrated signals in binary digits. This ipformation is
reformatted and recorded on half inch computer compatible tape for use in
the various HICAT computing progrums. .




FUNCTIONAL DESCRIPTION

Airborne Instrumentation

The aliboine iusLruwnenittion congists baslecally of the gust probe with
associated transducers for making the gust ‘measurements, strain controlled
ocelllators, and magnetic tape recorder as shown in the ayatem hlock diasranm
in Figure 4. A transducer simulator Is used to calilbrate thc performnce of
the strain controlled oscillators and the time code generator supplies time
base reference signals. These components are described in detail below.

HICAT GQust Sensor. The determination of the gust velocity components of
atmospheric turbulence from an aireraft flying through it generally requiresg
the measurement of two quantities

1. Motion of the air disturbances or gusts relative to the alrcrarft.
2. Motion of the alrcraft with respect to the ground.

The first measurement is normally accomplished by detecting compon~nt changcs
in flow directlon, flow velocity, or flow pressure. The gecond is obtained
by observing the vehicle's motion from the ground by optical or electrical
means or by recording the motion with respect to en inertisal or gravity ref- .
erence carriad aboard the vehicle. Acceleromete-s and gyros were uvsed for
this latter purpose on the RICAT program.

The measurement of item 1. above at altitudes of 50,000 feet or more from a
vehicle operating st high subsonic speeds requires a sensor designed to
satisfy some falrly restrictive requirements. Tt must operate at tempera-
tures reuting from 130°F on the ground to ~10G°F and atmospheri~s pressures
varying from 14.7 psi to sbout 0.5 psi at altitude without slgnificant change
in 1ts zero reference or sensitivity. The instrument must be able to accur-
ately detect atmospheric gusts with velocities as small as /2 ft/sec over a
frequency range from near zero to 10 ecps. In practice this requires an abil-

ity to resoive angular changes in flow direction of the order of "/20 of a
degree .

The fixed vane sensor developed by Lockheed meets these requlrements. The
sensor consists of a light welght wedgeshaped vane (4-inch spsn and 2-inch
chord) attached to a sperially constructed stra’n gaged beam. The slotted
construction of the beam allows the wedge to deflect parallel to itselt under
load. Figure 5 shows how this deflection takes place without change of
angle-of-incidence. Note that this would not be the case if the wedge wore
mounted on a simple beam as shown in Figure 6. Here the aerodynamic 1ift
load bends the beam and causes the vane to rotate changing the angle-of~
incidence by a small und undesired amount (/y o ).

By measuring the 1ift load in terms of shear instead of bending moment, con-
slderations of moment arm changes dve to center-of-pressure shifis on the
vane can be entirely eliminated. Figure 5 shows the ‘etrain gage installation
used to accomplish the messurements of the vane vertiecal shear or lift. The
shear 1s a fuiction of the difference in the bending strains between the fore
and aft gage stations. The Wheatstone bridg2 cireuit arrangement of the
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strain geges produces an electrical signal directly proportional to this
difference. At the same time. the strain gage clrcuit cancels out all un-
wanted responses. That 1s, there is no electrical response due to twisting
of the vane about its longitudinal axis, no redponse to sldeways lcading of
the vane, and lastly o responsc duc to forc and: aft forces on the vane,
The gust sencor deslgn is comparatively rugged. Tt will withstand airloads
as large as t 12 1b without damage., The sensor is alsn very stiff. The
fundamental or natural bending frequency 1s 155 cpa when the sensor is mounted
on the guat probe. This frequenecy ie so much greater than the turbulence
frequencies of interest (approximately 0-10 cps ) that maximum amplitude dis-
tortion in the measurement is less than 1% for frequen-ies below 10 cps.

Despite its comparatively stiff and rugged construction, the gust sensor is
extremely sensitive with an output of about 12 mv/v per pound of 1ift or
about 0.1.5 mv/v for a 1 £t/sec vertical or lateral gust at 50,000 feet. This
relatively large output results from the use of semlcounductor strailn gages
which have an output over 25 times larger thrn the usual wire or foll strain
gage., Detglled specification and calibration data for the gust sensor are
included in Appendix I.

The HICAT Cu:t Probe consists of vertical and latrral gust sensors grouped
about a central pitot-static tube (AF type MA-1l}, os shown in Flgure 3.
Vertical and lateral accelerometers and a very sensitive airspeed (preSSure)
transducer installed internally Just behind the gust sensor attach polnts com-
plete the gust probe instrumentation.

HICAT Nos» Boom. The rose boom 1g used to support the gust probe sufficlently
far shicad of the alrcraft nose as to be relatively unaffected by the aircraft
flow field. Normally it would be attached on the centerline to the most
forvard part of the nose of the alrcraft. However, radio gear In the nose of
the U-2 precluied this type of installsiion. The boom was therefore installed
Just under the nose as shown in Figures 2 and 8. This also caused the pllot's
pltot to be relocated as shown in Figure 4.

The boom was originally designed to mount the Glanninil gust probe. For this
purpose, 1t was made of 6061 aluminum slloy tubing, 3-1/2 inches in diameter
and ,188 inches thick. Overall length from the nose of the aircraft to the
gust sensing head was to have teen 80 inches. As explained on pege 2, this
gust probe could not be made to satisfy the requirements for high altitude
gust measurement so & Lockheed-designed senscr was installed.

With the Lockheed probe installed, overall length to the tip of the pitot-
static head was T77.3 inches. The gust sensing vanes were located 10.0 inches
beck of this point ao shown in Figure 3. Desplte the somewhat greater mass
of the Lockheed sensor, boom stiffness was considered adequate without
additional modification. Vertical and lateral boom bending frequencies were
14.1 and 12.7 cps, respectively, or about twice the highest frequency of
interest.

Trensducers. A total of twenty flight date and turbulence parameters comprise
the HICAT measurement list shown in Table I, page 6. A summary of transducer
specifications 1s also included for each measurement. In order to be come-
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patible with the strain controlled oscillators, all of the transducers except
the altimeter3 utilize resistance type strailn gages or variable resistance
lype pickups. yne location of the transducers rad related meazuring equip-
ment is shown on the ajircrafi planview in Figure 7. Installation photographs
of the sglgaificant items of aireraft instrumentation cppen 9

A L mac
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through 12.

Strain Controlled Oscilletors., These oscillators use a resistance bridge
Tof which the transducer is the main element) ain sowrce of signal voltage
which linearly shifts the frequeney of the osceill. tor. The magnitude and
direction of the frequency shift is proportional to the magnitude and direc-
tion of the resistive unbalance produced by the transducer. Thus the

measured quantity modnlates the osclllator frequency sighal which is then
recorded orn tape.

The oucillators are G.F.E. Bendix-Pacific Models TOR-7 of 1956 manufacture,‘.
Four of the flve subcarrier frequencic : used are changed slightly from the
standard IRIG values as indicated in Table II below.

TABLE T1I. SUBCARRIER FREQUENCIES

(1) (2) (3) (%) (5) (6)
Band IRIG HICAT Recording X17.5 HICAT Pleyback IRIG Band
(cps) (cps) (cps) (cps)

L 960 829 14,500 14,500 13
5 1300 1257 22,000 22,000 14
6 1700 1714 30,000 30,000 15
7 2300 2286 40,000 Lo, 000 16
8 3000 3000 * 52,000 52,000 17

The frequencles in column 3 are selected in place of the IRIG standard in
columt 2 1in order to permit playback of the flight data on the ground at
17.5 times the record speed or 30 in/sec. At thils speed the data appear at

-standard IRIG frequeucies corresponding to bands 13 through 17 &s shown in
the last three columns of the table.

]
The strain controlled oscillatcrs are installed on the lower hateh. They
%re Just discernible in the center of Figure 12.

_1___..__—,"

3 The altimeter transducer js a vuriable capacitance type device and comes
. equipped with ite own oscillator. \

L - Although replaced in most modern ¥M sy stems by the low \level voltage con-
{trolled oscillator, the £C0's performed adequately during the HICAT tests.
.Standard deviation of center frequency and change in sensitivity during a
‘&lven test was generally less than 2% of the bandwidth.
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Alrborne Recorder. The airborne recorvding is done with an Ampex AR 200 mag-

neFim tane recordar nmﬂ-mnﬂ with o 1T-dnah 1Thotvanl g_n_:lcc. hond, B,' ;;1:::*;:‘,,;

geversal chaunels of da ta on each tape track, only 8 tracks are required to
record all the HICAT data including the various timing and countrol signals
aind Lie piiol’s volice. Figure 10 shows the recorder installea 1n the upper
part of the aircraft equipnent bay.

¢

To accommodate the speed scaling deseribed ahove {tape record speed/tabe
playback speed = 1/17.5), the recorder is modified to operate at 1-5/7 in/sec
instead of the standard 1-7/8 in/sec. By thia means a T-hour flight recording
capobility is obtained with 1 mil tape. At the same tlme, the capubility for
rapid playback of the data at the standard tepe speed of 30 1n/sPc is pro-
vided.

Time Code Generator. The primary function of the time cnde generator 1s to
provide time base reference slgnals for the recorded data., For this purpose
two time cides are recorded simultaneocusly with the test data. The codes
used arc IRIG B and C.

JRIG B provides the basic time reference uged when converting the FM analog
tape to a digital computer compatihle tape., IRIG B time Is resolved to the
millisecond and carries year, day, hour, minute, and second informntion.

When playing back the data to make the "Quick-Look" cscillograph record, the
tape speed is normally increased by & factor of 17.5 cver the record speed.
At thig 3peed the IRIG B code 1is tvo compressed to be legible on the oscillo-
graph record. Cungequently, the slower IRIG C code furnishes the oscillo-
graph time reference.

The time code generator alsc provides two reference signals to enable errors
in playback speed to be corrected. These are the capstan control signal and
the wow and flutter or tape speed compensation signal. Finally, the time code
gencrator supplies the tajpy recorder motor drlve Trequency.

The necesslty for providing these last three signals (normally supplied by the
tape recorder e]eotronics) is the non-standari 1- )/T in/sec record speed which
is in turn governed by the 17.5 to 1 speed scaliing requirement to conform to
the IRIG standards of the van and the ground digitizing station.

All the tiwe code generator signals are derived by means of flip-flop count
down circuits from one source, a 750,000 cps crystal controlled oscillator.
Figure 11 shows the time code generator installed in the upper forward part
of the aircraft equipment bay.

Calibrator. The calibrator or transducer simulator, when actuated by the
rilot, replaces each transducer with a Wheatstone bridge circuit of fixed re-
sistance and then sequentially shunts a callbrate resistor acrose adjacent
legs of the bridge. In this way a stable center band reference level signal
and upper and lower band edge reference sigrals are obtained. These calibrate
signalsg then provide a direct meagure of the center frequency drift and sensi-
tivity change of the strain controlled oscillators.
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Mcbile Data Systems Van

'ne HICAT Mobile Data Systemse Vnl 1s a specially equipped Fruehauf trailer,
Figure 13. The equipment in the MDS Van used durilng the normal playbuck
function consists of a tape reproducer, amplitiera; suhrarrier diaeriminntore
and analog osclllograph recorder (see ¥igures 14 and 15). Tape speed correc-
tions are provided by a wow and flutter compensatilon system. A block diapgram
of the Mobile Dete Systems Van is shown in Figure 16. A detslled dencription
of the system components appears below.

Magnetic Trpe Reproducer, The magnetlc tape reproducer 1o a (Gonanlidated
Electrodynamics Corporation Model 5-752. The transport can be operanted at
1-7/8, 3-3/4, 7-1/2, 15, 30 and 60 inchcg per second and hag 1-ineh heads In-
stalled. Normal HICAT playback op:ratlons are pertormed at 30 inches per
aecond or 17.7 times record speed. Electronicu to play back 8 tracks sfrml-
taneously are available and are used to reproduce the 6 tracks of data, 1
track nof time and 1 treck of volce. The volce *rrck 18 nob normally readable
due to the increased playback speed but the presence of volce ectivity 1s
observable.

An 11fiers. The tape reproducer output 1s passed through MacIntosh MC-30 or
M-Lo high fidelity amplifiers to insure a proper impedance matich and drive
level to the following circuits. The amplifiers arc low digtortion, high
power galn devices providing 30 and W0 watts drive capability.

Subearrier Discrimingtors. Twenty-four Electromagnetic kescirch Model 67 sub-
carrier disceriminators are installed in the Van to process the datm. Thege
devices select the subcarrier band of the tape track and convert the frequency
modulated data to voltage data. In additlon to channel selection, the dis-
eriminator controls provide for adjustment of Lhe gain (volts per c¢ycle per
second), zero balance and zero sigrul level. The citput filter chaiacteris-
tic is selectable. For HICAT the ocutput filters have a courner frequency of
about 17k cpe equivalent to lTh/lT.S or about 10 cps in real time.

Tape Spe~rd Compensation System. Two Electromagnetic Research Model 96F tape
speed compensation systems each having 12 channels capabllity provide a
correction slignal for tape speed wow and flutter. This systiem eliminates
more than 97% of the wow and flutter errors over the system bandwidth and
thus makes practical the slow record speed and subsequent speed ccaling.

Recording Oascillograph. The output mignal is fed to a Consolidated Electro-
dynamics Corporation Model 5-119-P3 oscillograph using 32 C.E.C. T7-319 galva-
nometers for data signals and 4 C.E.(!. T-316 galvanometers for the timing
signels (see Figure 15). The data galvanometers have an undamped natural
frequency of 585 cps end when damped are flat to 350 cps. Tule latter fre-
quency corresponds to sbout 20 cps in real time for the date and represents
the upper limit of the data cystem bandwidth (i.e., for all practical pur-
Poses, aignal frequencies higher than 20 cps are completely eliminated by the
low pasa output fllters of the discriminators).

Tie oscillograph is equipped with a C.E.C. Dutarite Magazine Type 5-036 which
davelrps the flight record almost instantaneously and provides the dry "Quick-
Look" macillogram ready for evaluation.
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Accessory Test Equipment. In addition to the above main line ¢lements of the
Van data system, several items ol test cquipment and minor components are
required to complet. the operating system. Patchlneg, switching ané control-
ling circults are provided to route data and test siamnals to the discerimin-
ators, establioh specific programmed run gonnections, and provide for rapid
connec tlon of tegt equipment for trouble shouting.

A racl: of test equipment  including a counter, sn oscilloscope, o vol -
meter and lwo oseillators L1l mosbt of the Van and some of the alrcraflt
troubie sho .tine requirements.

Porinble test eaquipment consigting of a voltemeter, 'wo harmonic analyzers,
two IMrequency counters, and an ogeilloscope complete che trouble shootingg
equipnent neads for the alreratt and provide the electroniecs to perform pre-
and post-£lizht eolibvation and time setlbling.

Ground Station

The M analog tapes were procesged at the Edwards Alr Force Bace Aerospuace
Data Systems Branch ground station. The conversion process i illustrated in
the block dispgram in Figure 17.

Upon playback, <he mulbiplexed signals from the six data tracks were routed

to discriminators where the subearrinr signals were separated and d.c. voltage
signals proportionnl Lo the oulput of the transducers in the HICAT aircraft
were recovered. The d.c. voltage signals were then fed into the analog-to-
digital (A/D) converter wher: the deta were sampled and converted to an

elever bit Linary word through a convergent process of successive comparisons
of the sample amplitiude wiih precise reterence voltages. The range of the
eleven bit binary words in devimsl mode is * 1024 counts providing maximum
resolution of 1 part in 2040. Signals from the time code track are also read
during pleyback and serve as control input for the sampling rate of the A/D
converter. The sampling rate used throughout the program wes 40 samples per
second. Tie function of the output control is to serve as a buffer (temporary
storage) for the incoming binary data words and the decoded time words, pro-
vide computer compatible output formating for tne irformation in otorege, and
have capabllity for writing this information on half inch digital tawe.

Calibration of the sampled datm on the digital tar~ was perfcrmed on the

IBM 7094 computer under the conirol of RAFE FM Calibraticn Program. The
calibrated data 1n engineering units was output in a oinary time frame format
on n gtandard helf inch digital tape. ZXach deata freme consists of the time
of day with the smupled data for each of the twenty parameters recorded at
thet tinme.

n
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SECTION IIX

DATA ACQUISITICN

HICAT SEARCHES

A general requirement of the HICAT dala acquisition phase is that turbulence
data be accumulated during different scasons of the year and over varying
gecgraphical terrain. In the HICAT program Lo date, fligabts have been con-
ducted from Edwards Alr Force Ruse, Californim; Patrick Alr Force Base,
Floride; and Ramcy Alr Force Basc, Puerto Rico. The flights from Edwards
covered large portions of Cnlifornia, Wevadn and Arizona. Thosc from Patrick
passed over Florida, Georgle, South Carolina and the Bahama Islends. The
Ramey based flights were over the West Indies arca and the Caribbean Sea.

The U-2 HICAT flights were carrled out by pllots of the Edwards Air Force
Bagse Special Projects Branch of Flight Test Operations under the command of
Lt, Col. Harry Andonian. As indicated by the Flight Log in Appendix II,

Col. Andonian, Capt. R. B. Lowell, and Capt. W. H. Shawler together made 33
HICAT test flighis totaling 94.7 fligzht hours. Eighteen of these flights
were planned searches for high CAT and 14 of tho 18 resulted in CAT encounters

of 1izht to moderate roushness. In addition, high CAT was peretrated in threc

of the 15 incidental flight tests. These were aircraft check flights, instru-
mentation check flights, and ferry flights. Overall, 7.4 hcurs of high CAT
was recorded, 6.1 of them coming from planned searches based on CAT forecasts.

Track maps of the HICAT flights are included in Appendix TI with the flight log.

In ideal circumstances, a preparation tor a HICAT search flight begins a day

or two before the aircraft actrally fiies. At this time the developing
weather trends are studied to determine if conditions are likely to be
favorable Tor CAT and a decision is made as to whether support aircraft will
be needed.

AalICAT FLIGHT DNESCRIPTION

HICAT support circraf't werw: of two types. A B-4T was frequently used as a
low altivude turbulence scout end to furnish navigational support to the U-2.
For overwater flights, a C-S5I Air Rescue transport patrolled near the HICAT
search area to provide immediate aid il event of & mishap.

On the dey of the HICAT flight (assuming conditions are sti?l favorable) a
flight plan is prepared and the pilot brisfed on high CAT conditions and any
speclal flight tests to be performed. Meanwhile, the aircraft is preflighted
in the hangar. The instrumentation is checked and then the time code gener-
ator is twned on and the time set in. The sircraft ie then towed to the
tekeoff point on the runway.

The pilet arrives, garved in his high altitude prespure suit, and climbs
aboard. He was prepared for the HICAT flight by breathing pure oxygen for an
hour or more prior to takeoff to eliminate nitrogen from his dblood.

The ergine is started and all test instrumentation comes o, including the
tape rezorder. The aircraft takes off and c¢limbs to above 50,0C0 feet and
fli.s to predicted or suspected areas of burbulence. By monltoring his c.g.
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acceleromeber, the pilot can rendlly evaluate the intensity of any rough air,
TP aimdficant (+ e o htzﬂpw\ trurknloance ia an-h'm‘“oﬁnﬂ tho olwnawndi
maneuvers 8o as to define the turbulent area. Fairly lovol stralght runs

are bLhen mode throuzh the turbulence. When not in turbulence, control pulses
an woll s oceasional smoolll symmeiric piieh mancuvers or rollercoasters are
rerformed Lo check the instrumentatica. The average HICAT f1ight lasts aboul
three hours.

Upon returning from a CAT search, the alreraft is towed Lo the hangar for
vostflipht instramentation procedires and checks. The pilot is debriefed
and the "Quick-Look'" oscilllograph record examined to evaluate the turbulence
penetrated ag well as for ovidence of lustrument malfunctions. Maxlinum and
minimum turbulence aceel=ratlons and equlvalent derived pust velocitlies are
determined at this time Sor comparison with the pilot's reporvi.

SECTION 1V

DATA PROCESSING AND ANALYSIS METHODS

GENERAL

The main purpose of the HICAT daota processing and analysis is Lo statistically
define the esgsential charactevistics of high altitude clear air turbulence

in a mamer uwseful to the aircraft structural designer. 8Secondarily, the
analysis will atcempt to correlste the bturbulence measurements with signifi-
cant geopiysicel and mcteorological faclors.

The first step in processing of the digitized dala after it 1s seformatted is
numerical filtering. This filtering process further improves that already
performed clectronically and completely eliminates frequencies grealer than
10 eps. Corrccted gust velocliies are tlhen computed ubilizing the equations
shown in Appendix IT and plotted in graphical form along with the other fli;sht
parameters (i.e., airspeed, asltitude, temperature, Mach number, c.g. acceler-
ation, etc.)

Because of the apparently random character of atmospheric turbulence, statis-
tical methods of analysis are employed. These conslst primarily of peak
counts of the gust velocity time historivs and computations of gust velocily
power spectra.

PEAK COUNTING

Tris program counts and classifies into pre-established positive and negative
intervals the maxima or minira (peaks) in a set of discrete time data points
such as could be obtained from a gust velocity time history. A peak is de-
fined as the maximum or minimum value between two intersections of a certain
narrow band. For most of the peak counts contained herein, this band was

the mean value of all the data plus and minus .1 of the smallest peak count

interval.

Individual peuk cownt plots are obtained by an accumulation process wherein
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all the positive and negative peaks within a velocity or acceleration inter-
val arec first added torether and then sumned over all intervals beginning

Wilh Uie Largest veloCitlcs oy acaclovatizns. In this woy o sunulative pool
count distribution is obtained. By dividing by the total nuwiber of miles
in the turbulcnce sample, the di: tribution becomes an estimate of the fres

quency of equaling or exceeding & glven velocity or acceleratlon level rer
mile of flight, e.g., sce Fizures 2I through 3.

POWER STECTRA ANALYSIS

This method of aralysis involves the mean-square value of o funztion and has
by electriunl anslogy come to be considered in Lerms of average power. The
power spectrum or power spectral dersity of a function (:.b., a sugt velocity
time history) describes the mamner in whilclh the total average power of the
function (velocity amplitude cquared/cycles per second) is distributed over
the frequency range of interest. In essence it provides a statistical meas-
ure of the mean square amplitude of a measurement for each of a number of
narrow but discrete frequency vands. The square root of the sum of all’ these
valuea over the frequency ranze of the spectrum gilves the RMS value of the
spectrum data.

Normally, power spectra from uniform time series dnta are computed and plotted
age & function of cycles per second or radians per s-cond. However, in turbu-
] lence work it is desirable to interprct the cyzles per second in terms of
wavelengths in feet or inverse wavelength in cycles/foot. Thus, to obtain
the ordinates of the spectra 1. cycles/foot requires dividing by the aircraft
speed in ft/sec. The averape true airspeed of the alrcraft was the value
| ' used for the spectira aprearing in Figures 36 through 68.

Further description of the HICAT data processing and analysis methods is
contained in Reference 5.

SECTION V
INTERIM RESULTS
The results acquired in the HICAT program thus far include time histories,
peak counts, anc power spectra of gust velocities and related flight param-

eters. A summry of HICAT data processed and analyzcd to date 1s presented
in Table III.

TIME HISTORIES

Time histories were plotted of all the dat% for which gust veloclties and
gust Velocity spectra could be determined. For this purpose, turbulence

5 Longitudinal gust velocities were not computed because of the frequency
response limitstlons of the pltot-tube.
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test data were divided into rung or samples of “wo Lo four minutes durati-a
The run time historles were ugsed primartily to evaluate the quality of the
data aiter digltizing and filtering and to check the gust velocity and pen:
2ount calzulaticns.  In §Siieral, i Lutbulence duin samples selected
appeared to be random and falrly continuous with no obvious periodicity or
dlgerete gust peaks. The data also appearced te be sensibly slatlonary.

A two-minule sample time history selecved irom 2 run 3 of test 33 la slhown
in Figwres 18 throuch 23, The data plotied ilnelude vortical gust veloels
c.g. normal accnlcmtion, lett wing nodal accelerabtion, derived equivaicr
aqust veloeity (Ude), and aireratt cquivalent velocity (Ve). In the jusk
velocity Lime history shown, frequencies less than .2 cps and greater Lhan
10 cps were removed by numerical filltering. Removal of the very lew freque-
cles was required because of inhereni limitations of the instrumentation.

[N

PEAK COUNTS

Figure 24 presents actusl gust velocity peak count data in terms of frequency
of exceedance per mile of u Livelr value of vertical gust velority. Since
these data are¢ ihe first of their kind at high altitudc, no data are avail-
able for comparison except the runs shown. Comparison of the true gust
velocities with derived equivalent gust velocities (Ude) is meaningless. A
true gust velocity describes an atmoipheric condition directly. A Uy, on the
other hand is s very indirect stmospheric description derived from an aire
craft's c.g. acceleration experience utilizing simple but frequently Inappli-

cable assumptions (sen Appendix Iv). The Ud concert has been utilized in years
past for lack of actual gust veloc:.ty date 8nd Lhe analytical melliods ko use
‘them.

Figures 25 through 33 prraent frequency of exceedance plots of Ug, and c.g.
norma) accelerations. The accelerations data have been 1lncluded to «ive a
direct measure of alrcraft response as well as to indicate approximately
what the pilot feels.

The HICAT Uj e data may be properly Inteypreted provided the following dic-
tinction is made. The HICAT data were obtained in flights made for the ex-
press parpose of enccuntering and continuously sampling turbulence above
50,000 feet. Consequently, all miles in the HICAT Ud Plots are turbulent
miles. However, the orly Ug, data available for Lomparison come from NASA

TN 0-548, reference 2. In reference 2, the turbulence described was encoun-
tered In non-random flights made for other purposes than to collect turbulence
data. Consequently, the cumulative frequency cwrves of Ua, conte ined therecin
are based upon total flight miles of which only a small percentage vere turbu-
lent.

Figure 34 presents the cumulative frequency data from reference 2 compared

with the HICAT data from teat 33. HICAT test 33 was selected for comparison
for two reasons: (1) measured c.g. acceleratiors, and hence Ude va.lues, were
among the highest recorded to date, and (2) terrain and associated "mountain

6 This 1s not expected to be necessary in the redirected RICAT program
because approapriate.preclision instrumentation will be availatble.




wave" turbulence are believed to be very simllar to some of the Japanese

data of rveferenee 2.

Thae HICAT dute choum at the tan af Tigirve U are based only uvon the lensth
in miles of the total turbulence sample. By includlng all the miles above
50,000 feet on test 3%, nonturbulent as well as turbulent, the cwve may be
snifhed down as shown.

Note that thcac two [ICAT curvea differ by an order of masnltude indlent ing
that for test 33 the afreraft was in turbulence about 10% of the time. The
data nt the bottum of the figure is for routine reference 2 flights in which
turbulence was creounterad about 2% of the time. The difference between Lhe
10% and the 2% turbulence retlects directly the type of mlssions being flown.

Note that the adjusted HICAT Ug,, datn most closely approach the data from
the relatively severe turbuwleuce encounbered over Japan., Reference 2 indi-
cates that two flirhty, CW-58-2 and CW-58-4, are responsible for most of Lhe
Uae peaks. These two flighta Lnclude about 9% of the Lobal miles flown in
the Japanese wrea, y=t they contribute more than 20% of the turbulence miles.
Most significant of all, they contrihnte 90% of the data above 4 ft/sec and
all the data ashove 10 ft/sce. By assuming as is very nearly the case that
thesr two flights comprlse all the siznificant turbulence cxperience over
Japon, the cumvlciive tiogquency curve for the Japanese data will shift up-
wards by an order of magnitude, On this basis, the data are comparable to
the HICAT Aata nnd ln Tact arc seen Lo be nearly coineident with them.

Fipgure 35 presents the varimtion of Ude with altitude presently used in de-
sign of military aircraft (see retfurencs 6). Superlmposed on this figure are
Uae data points obtained in various HICAT flights. Note ihat in approximate-
1y 24,000 miles of flight in HICAT searches, the design values between 50,000
and 60,000 feet have not been exceeded., Thus far, a sighificant margin ex-
ists between the highest recorded Ug,, and the degign value in this altitude
band. More data samples will be required to permit further genernlization.

POWER SPECTRA

Power spectra of vertical gust velocities are presented along with power
spectra of VpA @ and Vo A B in Figures 36 through 68. The grouping of
the ¢pectra 1s by ascending test number.

The VpA @ and VTif-. R referred to mbove represent, respectively, the
product coi true airspeed and incremental anglc-of-attack and true &irspeed
and sideslip nngle. They are the uncorrected vertical and lateral gust
velocity compon:nts. TFor frequencies above those i~ which the aircraft
responds (i.e., about 2 eps corresponding t¢ wavelengths of sbout 1/.003 or
330 feet) specira of these quantities are accurate representations of gust
velocity power. Below the frequency limit mentioned, correction is required
for aircraft translation and rotation.

This correction could not be applied to the lateral gust measurements and to
soue of the vertical gust measurements due to malfunctioning rate and atti-
tude gyros. Consequently, only uncorrected lateral gust velocity (Vp A B)
spectra are shown with (in most cases) both corrected and uncorrected
vertical gust velocity spectra included for comparison.
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The power spectra lables are somewhat abbreviated and require explanation.
Mhe £zt 4hres 3lgits aller "Test” are the test mumber. The fourth digit
is the run number. The letter stands for the fileld test site, 'E' for
Edwerds A¥B, 'P' for Potrick AFB, and 'R' for Ramey AFB. The "Start Mime" 1
the moment the run hegan in hours, mlnutes, and scconds of Greenwlsh time.
"Duration" or run lenrth 18 in minutes and seconds. The "No. Lags" is the
number of estimates comprising the gpectrum. The "Time Incr.” is the time
between date samples in seconds. '"No. Point-" 1s the number of data samples.
"Deg. Freedom” is the number of degress o. freedom in the data sample and 1s
used to evaluate the gtatistical reliabllity of the sypectrum.

in

For statistical reliasbility the "Deg. Freedom" should be large, preferably
100 or more. For 100 degrees of freedom one mey say that four out of five
times the measured spectrum 1s within * 18% of the "true' long temm average
apectrunm, ’

Mathematically, the gust power spectrum is defined in terms of a scale of
turbulence, L, a mean square gust velocity intensity, ¢ wg , &end an exponent
deseribing the reduction in gust velocity power with increasing frequency
(decreasing wvavelength). The scale of turbulence 1s no. mally detemined by
the location of the bend In the low-frequency end of the spectrum. Unfor-
tunately, the spectrum cowld not be deflned accurately below .25 cps because ’
of inherent limltatlons in the instrumentation system. Consequently, a scale
of turbulence cannot be specified from the present data. However, it would
appear the "L" is not less than the 2500-foot end roint of the present spectra
gince little 1f any bend 18 vislble.

Too few duta samples are avallable to enable meaningful discussion of root
mean square gust intensity, Oy, except to Indicate that the RMS values shown
in the spectra and in the data summary are values obtained by integration of
ihe truncated spectira without extrapolation to zero frequency.

Data avallable at much lower altitudes than the 50,000 plus feet HICAT flights
indicate that the gust spectrum may have a constant negative slope at higher
frequencies. Two commonly used analytical approximat.ons for the wvpectral
shapes at these altitudes are defined as follows:

l. Liepmann equation

2
N L l+392L2
e(8) - o §1+92L2)2)

2. Imotroplc turbulence equations

2 .
6(Q) = ¥ L _148/3 (1.339 ﬂ%‘im
7 [1+ (L33e9u] MY

Thesc expressions predict high-frequency slopes (on a log-log plot) of -2 and
-5/3 respectively. The HICAT cats plotted in Figures 54 and 66, for example,
tend to follow similar slopes, lying closer to =5/3 than to ~2. The gust data
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not well defined. More data are required before rellable average slopes can
be determined.

SECTION VI

METEOROLOGICAL ASPECTS

The meteorological aspects of the HICAT program are basically threefold:
1. Selection of HICAT sampling sltes.

2. TForecasting rough air in the cite area and establishing flight
plans.

3. Analysis and interpretaticn of data.

SAMPLING SITE SELECTION

Wind shear is the most important source of energy for theTproduction and
growth ot atmospheric perturbations that cause rough air. Consequently,
those regions having particularly high wind shears such as the jet streams
would have the highest probability of also having rough air. The jet stireams
and the seasons considered optimum for encountering rough alr are indicated
below:

1. The mid-lavitude (30°-50°) Jet that flows in the upper troposphere
and lower stratuonhere from west to east. This Jet is strongest
in the wintrr and azressible from kdwards AFB, Callfornia and
Patrick AFB, Florida, for example.

2. The tropical jet that flows from east to west in upper stratosphere.
This jet is accessible in the summer from Ramey AFB, Puerto Pico.

3. The polar night jet that flows from west to east over Alaska and
" Northern Canada in the upper stratosphere. The bottom of this jei
would be accessible from Eilelson AFB, Alaska.

Air flow and heating due to ‘the varying charscteristics of the underlying
surface (i.e., ocean, mountains, plains, etc.) may cause perturbations in
the troposphere and stratosphere under certain conditions of wind field and
temperature structure. These pertwrhations may cause rough air or otherwise

T The terms rough air and turbulence are often used interclangeably. lHow-
ever, in this section rough air refers to both the comparatively random
turbulence oscillations as well as to the more regular oscillations
identified as undulance.
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modify the wind shear fleld. They can be investigated along with the Jet
satream phenomena from the sites indicated or from other sites in the areas
described. ’

3
The ahove considaratinne were and eontinue to bhe the hasis for HICAT citc
gelection., As desceribed in Section ITI, HICAT flights have thus far been
conducted from Edwards AFB, Pa*rick AFB, and Raméy AFB. It is expected thnt
+the redire-ted and extended HICAT program will condlct additionel flights
from these bases ae well as from Alaska and nther untested aress.
FORECAZTING |
Torecesting 1is obviously impo}tant in order to improve the effliclency of
locating and sampling the rough alr. The basic forecast was provided by
the Strategic Air Command., These forecasts were based on a numerical model
that uses wind shear as the primary assessment for rough-air occurrence and
intensity. Although this numerical model was developed for altitudes below
k5,000 feet, it was the only method availlable at the start of the program.

This rough-alr forecast was received from SAC Headquarters each afternoon at
the fleld test slte, i.e., Edwards AFB, Patrick AFB or Ramey AFB. Ideally,
if the forecast was favorable for the ocecurrence of roush-air within range
of the aircraft, the Officer in Charge was notified that the fnllowing day
was favorable. IF weather condltions still appenred favorable on checking
the weather maps the following morning, a recommended flight pattern was
established and the pilot briefed.

Several rough-elir data gathering patterns were utilized. 1In this inltial
vhase the basic objective was to sample as much rough air as pogsible and at
the same time to cover as much area as practical in order to verify fore-
~agts, In some cases where signiticant turbulence was encountered, a box or
triangle pattern wag flown at constant altitude in order {o delineate the
horizontal dimensions. In other cases where the rough sir appeared to be
associated with local features such as towering cumulus or mountains, several
altitudes were sampled in order to determine not only the variation of rough
alr with altitude but alsd the variation of temperature with altitude.

ANALYSTS AND INTERPRETATION

The analysis and interpretation of the rough air data 1s concerned with
developing rhysical and analytical models to relate the rough air character-
istics to the meteorological and georhysical conditions. To assist in the
evaluation of these relationshipas, each flight is plotted on a large scale
geronautical chart with contours to indicate major tcpographic features. The
areas of rough air and smooth alr are charted based upon the pilot's observa-
tion. These track maps appear in Appendix IT. The meteorological data were
provided by the Air Weather Service. These data consisted c¢f the surface
weather charts, 500 mb, 300 mb and where available, the 100 mb upper air
constant pressure charts. In addition, the regular upper air wind and temper-
ature data were provided for thos: stations near the flight track. Where
available the upper air data used came from the USAF "listings" and from the
ravinsonde records of Weather Bur:au stations.

The "listings" are wind snd tempersture data that are automatically calculated
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and printed from balloon runs. Thz Weather Bureau records consisted of
form WRAN2O fur winds and the oriminal radiosonde recorder recovds for the
temperal:ures. These recoardé vere used to determine the wind and temperature
prollies 1n oraer to investigate the small scale details of the vertical
atmospheric structure.

For ressons discussed in Section I, the "rough-air" data flights frequently
could not be 1lown under mekeorological conditlons considered conducive to
rough air, l.e., in vielnity of strong jot streams, and/or mountain wave
activity. Nevertheless, a significant amount of light to modcorate turbulence
wee encountered (6 hours in the searches and 7-1/2 hours overall). Ixamine-
tion of these data indicutes that In the herizontel distribotion of turbu-
lence at least three categories of atmnspheric aclivity are impurtant:

1. Strong wind shear assoclated with jet gtreams (teat 11).
2. Mountain wave activity (vesta 7, 8 and 33).
3. Low level heating including convection.

In this latter category, tests 10, 12, 1T7-20, 23, 28-30 occurred above or
neur towering cumulus or cumulonimbug clouds in stralght or antiecyeclonic
flow., Tests 26 and 27 from Ramey AFB occurred over convective areas asgoci-
ated with easterly waves (eyclonic flow). On the other hand, tests 22, 2l
and 25 occurred well away from viasible low level convection yet in the same
weather mattern.

In order to see 1f the occurrence of rouwh air over the Carilbbean occurred
under preferred conditions of wind shear and kemperature crnange with lieight

3 x 2 contlngency or data classification table was prepazed relating the two.
The table indicated that most of the rough air occurreinces were associated
with near isothermal conditions or temperature definltely increasing with
height. TLess than 5% of the rough air cccurred with temperature decreasing
more than 1°C per thousand Feet (3°C per 1000 feet is the adiabatic lapse
rate). No clear-cut relation of rough alr occurrence with wind shear was
indicated. Approximately a fourth of the rough alr occurred with wind shears
legs than one knot per thcousand feet,

The lack of relationship between the wind shear, temperature change with
height, and rough air cccurrence cannot be explained at this time. It may
8imply be the result of attempting too detailed an analysis with wind and
temperature observations not sufficiently close in time and distance to the
rough air locetion. Tt is likely that some of the future HICAT searches will
be conducted directly over weather observation stations to clarify this roint.

Additional and more detalled analysis of the HICAT data from the meteorologi-

cal standpoint is presented in reference 7 in conjunction with the "High
Altitude Rough Air Model Study".
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SECTTION VI

CONCLUSIONS

It is nnt rossilble nor appropriate to present "lnal conciusions at this
Juncture in the HICAT vrogram. The ma,or porvtioqu of the progrwn is still
ahead aund many ukaowns remain to be explored.  However, certatn obgervntiona
can be made to summarlze the results and accomulishnents to dabe as tollows:

Wi

Sl

1. A sensitive high altltude gust prohe has been designed, develoyped,
and combined with a T-hour FM recording system to succosstully
measure turbulencc velocities.

ra

High CAT is relatively ensy to loeatv. Tt wag encountered in &
i 14 of iB HICAT searches at altitudes of 0,000 fect or more as
. ‘ ‘ C well as in 3 of the 15 incidental flightse.

3. High CAT epcountered in the mnajority of tlightsc appeared to be
asgociated with low level (tl\nospheric) convective actlivity
np indicated by swelling cumulons and cumulonlmbus clouds.

b, The most severe turbnlence encountered was assoclated with
moun-ainous terrain and appeared Lo he of the "mowitaln wave'
type, The NASA data of reference 2 appear to show a gimilar

A che racteristic.

5. The vertical gust veloclty power siectra thus far obtained
indicate a scale of turbulence ut sltitudes above H0,000 fech
in excegs of 2500 feet.

6. Derlved equivalent gust velocity (Ud ) values ouvtained to date
are well within the U& dewign envelipe speetfled by reterence 6.

”y
i

i
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: 0




Figure 1.

U-2 Alrcraft Used For HICAT Searches




Figure 2,

Nose of U-2

Figure 3, HICAT Gust Probe Closeup Showing Verilcal and Lateral Gust
Sensing Vanes and Alr Force MA-1 Piltot-3tatic Tube
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Figure 9, Total Temperature Sensor Installation cn Nose of Alrcraft
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Filgurr 10. Mugnetice Tupe kecorder Installation in Equipment

'Zu.v,

1 - Figure 11. Time Code Generator Installation in Equivoment Bay
(Upper Hatch Removed)

28

R T T




ST e RN TR R P—T—‘ A

Figure 12.

Instrumcntation Installation on Lower Hatch
of' Equipment Bay

Figure 13. Moblle Data Systems Van
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Figure 14, Van Instrumentation Showing Magnctic Tape Reproducer,
Patch Punecl, Electronic Tesl Equipment, and Subcarrier
Discriminatcr Array

.

Filgure 15. Van "Qutck-Look" Oscillograph Recorder and Control Panel
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DATA TROCESSIKG
AND ANALYSIS

m C.E.C. TAPE REFRODUCER MC INTCSH SUB-CARRIER DISCRIMINATOR
50 amaize _BOFFER asn | 1
TAPE '"'7.1 TAPE REPRODUCE | -= asriorssd Lo B e 10
TRANSPORT ELECTRONICS (I4PEDANCE PASS | DISCRIMINATOR | pasS
MATCH) FILT (CONVERTER) [FILTER
: ‘Ill T *
[
L BMR
, ———{WOW ANU PLUTT
| COHPENSATION
! SYSTRY
i
i TO GRCUND STATICN
TSS9 APTER QUICK 100K
C.E.C. OSCILLOGRAEH
- -=-= { DIRECT READING GALVANMETER |~ - -
| CSCILICGRAPH CONTROL | ANEL
|
TO BIRBANK

Figure 16, HICAT Data Acquisiticn System Block Diagram
tor the Mobile Duta Systems Van
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Figure 17. HICAT Data Acquisition System Block Diagrem
for the Ground Station
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APPENDIX I

HICAT GUST SENSOR SPECIFICATIONS AND CALIBRATIONS

T AV mrrerd Avmr drmmhm o ad s YPTAAM mmimdy amtamace Lase. A o et
A L NSA b Ay WL v UL WAL Jadon UYL DCHOUL AUVC u U.ILDULU CU LILE L WULLUWL L
capabllities:
Range: + 12 1
: - -Sensitivity: 11.8 MV/LB/VOLT (DC or RS AC)
. S ' , B . @ 78OF . o
: Thermal Sensitivity Shift: s oowh(mv/ma)/or @ 1 volt
‘ or -+1.3%/100°F '
Thermal Zero Shift: .025 MV/VOLT/°F or 1.8%
, : : , Full Scale/100°F

Test Temperature Range: -102°F to +130°F

Natural Frequency (Undamped): 170 cps
Sensor Welght Ahead of Guges: 0.0365 1b
0.25 1b

Overall Sensor Welght:

The sensor iempersture and load celibration data are presented in Flgures 69
and 70. The sensor load callbration responses for various combinations of

loading are snown in Teble IV, page

R T T - -

I s

8

85

IF ey

i
i4
”

SR TSI




_v
*0L OanITy uy weidvip SujpRoy S —
peoT opfs 9
PROT AJV=PUV=0I04 ¢
pOTIEA UOTI03ITQ ONbIOL ~ PO ucIeI0l YL
: POTIUA WIY JUGEON ~ PYOT TWOT3I0A 26T 303N
00'0 96°T €80  00°0 - - - - 00°0 T2°0 60°0 00°0 9
FH-Q' WN.Q. nnﬂo ’ N@.O - - - - « NOUO‘ mo.ol 800 O.H-o “
€6'36 69°26 29°86 €8°00T|| TO°T~ TE°T=  SE°T~ €8°0 [} ZL°TT L3°0T 69°0T  ¥6°OU} ¥
Z5"TOT £0°TCT 87°TO1 60°00Tff 26°T €0°T 87°T 60°0 || zo*zT =2g*Orl QO°TT 93°OL| ¢
00'00T 2ZL°66 8§2°00T 60°00T|| 00°0 82°0~ 82°0  60°0 {| ¥8°TT 89°0T 4L8°0T 98°CT} 2
00“00T 00°00T 00°00T 00°00T 0 )] 0 0 78°TT  TL°OT 73°01 98°OTY| 1T
4 oo
gmm> owb oN.,ab n.mhb oNﬁ> o:mﬂb uN«b omm» oM«p oﬂmﬁb owﬁb om&b «u:ww
puot
jueosad) T *puod y AR i
T WO3ATPUCH PROT JO JUedId mos nou,w noavTASq .Srmmm&ouwa

SAENOISHY NOIIVYETIVD QVOT HOSNES ISNS IVDIH

AT FTOVE

Cb e b

L L R T T 3 T 1/ IR AN Y

B R e gt 9




APPENDIX II

HICAT FLIGHT TEST LOG
AND TRACK MAPS
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Figure 75.
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APPENDIX III

GUST VELOCITY EQUATIONS

The equotions for the determination of the verticel, luberal, and longitudi-
nal gust veloclty components are given below:

Vertlcal Gust Veloclity

t
n .
UV a VTAa-VTAH+ﬂO Aath

where V,I,Aa 2 verticel gust veloeity relative to the guct

probe, 1.e., uncorcected for alreraft rotution
oand “ranslation in the vertical plune
o { A Pa +m Hoy)

CNa va C'V

Zateral Gust Veloclty

tn

where VT AL = laterul gust veloclty relative to gust probe,

i.e., uncorrected for alrcraft rotatlion and
translation in the horizontal planc,
2(APg +m ADap)

V. AR =
T CNB pVT SV

Longitudinal Gust Velocity

- tn
Up = AVT—ﬁo (uF—gAﬁ)dt

where AVT = longitudinal gust veloclty relative to gust

probe uncorrected for alreraft fore-and-aft
incremental veloclties.

Symbols and sigu convention are presented in the prefoace of this report.
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APPENDIX IV

DERIVED EQUIVALENT GUST VELOCITY FORMULA

The derived equivalent gust velocity 1s a seml-empiricael relationship definzd
as follows;

2 A ay W
Ug, = -
de CLg po ¥g Ve 5

This formnla is popular with odrcraft designers because 1t provide them with
a simple approximate relationship for predicting the maximwa acceleration «
new alrcrarft design muy he expected to experience based upon the gunt accel-
eration expurlence of an old design ox reference alrplane., The Ug, cquation

is derived from unsteady lift theory and may be applied subject to the follows
ing assumptions:

1. The aircratt is a rigid body.

2. The alrcraft forward speed 1s coustant.

3. The aircratt is in stcady level fllight prior to gust entry.
b, The aircraft can rise but cannot pitch.

5. Lift other than from the wings 1 negligible.

6. The gust velocity 1s uniform across the wing span and alwuys
normal to the longitudinal axis of the aircraft.

7. The gust profile is a 1- cosine shape.
8. The transient 1ift function is constant with speed.

. All airplones are of conventional planform and have the same
general characteristics.

10. Relative loads for single isolated gusts are a measure of those
from a sequence of gusts.
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